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Abstract

A new Nyquist-type method for stability analysis is
presented. The envelope of the mapping from source and
load impedance planes with “normalised determinant
function” is determined for all passive terminations. The
circuit is unconditionally stable if the origin is not
encircled or included within the envelope. A single plot
reveals instabilities, caused either by internal poles of the
circuit or by arbitrary terminating impedances.

1. Introduction

Conventional stability analysis methods using e.g. k- or
µ-factors are not sufficient to reveal “hidden” instabilities
that arise from internal feedback loops, e.g., in an MMIC
power amplifier that contains several parallel-coupled
stages. Investigation of the location of the zeros of the
system determinant, i.e. Nyquist-type of  stability
analysis is required in such cases [1,2,3]. A linear system
is stable if and only if all the zeros of its determinant lie
in the left half plane (LHP), provided that none of the
individual elements of the network has poles in the RHP.
Platzker & al. [1] have presented such a method to
determine the number of zeros in the RHP using the
normalised determinant function:

F = ∆
∆ 0

(1)

where ∆ is the determinant of the circuit under
investigation and ∆0 is the determinant of the companion
circuit which is identical to the circuit of interest except
that all the dependent active sources have been set to
zero. The number of zeros in the RHP is obtained by
plotting function F at all frequencies and counting the
number of times the locus encircles the origin.

The method of Platzker is effective in finding the
“hidden” instabilities, caused by the zeros of the
determinant in the RHP. However, the instabilities
caused by the termination impedances still have to be
analysed separately, using the conventional stability

factors. If the circuit is large, containing several cascaded
stages, this analysis is inconvenient as each stage has to
be analysed separately (Fig.1). In addition, especially in
MMICs, several stages may have common components
(e.g. in bias lines), so that the borderline between stages
is not well defined [4]. It would be very useful for a
practical design work to have available a single stability
analysis tool that is capable of detecting both types of
instabilities automatically and in a single pass. The
purpose of this paper is to present such a tool.
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Fig. 1 Multi-stage amplifier - difficult case for stability
analysis.

2. Theory

We start from a general n-port terminated at the input
and output ports with arbitrary passive admittances YS

and YL (Fig. 2).
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Fig. 2 General n-port

The n-port has nodal admittance matrix Y:
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Assigning nodes j and k to the input and output ports, we
obtain admittance matrix Y’ for the complete circuit:
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In order the circuit to be unconditionally stable,
determinant ∆’ of this matrix should have no zeros in the
RHP with any combination of passive terminations YS

and YL. We can express the determinant in the following
form:

∆ ∆ ∆ ∆ ∆' ,= + + +Y Y Y YS j j L kk S L j j kk (4)

where ∆ = det (Y), and ∆jk is a cofactor of ∆, obtained by
deleting row j and column k from the matrix.

Next step is to evaluate, in the similar fashion,
determinant ∆0 (and the corresponding cofactors) of the
companion circuit, where all the controlled sources have
been set to zero. The normalised determinant function F
of Eq. (1) can then be written as:
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and the normalised terminations are expressed with the
corresponding reflection coefficients:
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(7)

Stability of the circuit can be investigated by plotting Eq.
(5) for all ΓS and ΓL within a unit circle, i.e. by writing:

ΓS
je= α and ΓL

je= β (8)

and plotting function F at all frequencies for all angles α
and β from 0 to 2π. If the plot does not encircle or
include the origin, we can conclude that the circuit is
unconditionally stable, i.e. its determinant has no zeros
in the RHP for all passive terminations.

It is very cumbersome to calculate the value of
determinant function F numerically for several
frequencies and angles α and β. Therefore, we determine
the envelope of F by calculating, for each value of angle
α0, the corresponding value of angle β  that gives a point
on the envelope of the plot. In this way the burden in
plotting is significantly reduced, as only a single angle
variable has to be swept. The envelope can be found by
considering mapping F(α,β) and noting that, at each
point of the envelope, ∂F/∂α and ∂F/∂β have to be
parallel [5]:

arg arg
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The solution of Eq. (9) is straightforward, but tedious.
The resulting equations are too long to be included here,
but are  given in [6]. Main requirement for implementing
this generalised stability analysis in a circuit simulation
programme is that the circuit determinant has to be
available. The necessary modifications have been
implemented in the circuit simulation software APLAC
[7,8]. An example of the use of the method is shown in
the next paragraph.

3. Example: Platzker’s ring oscillator

The simple ring oscillator circuit of Fig. 3 was studied in
detail in [1,2], and it is also used here to illustrate the
stability analysis principle of this paper. With the resistor
value R2 = 5 Ω, the circuit can be either stable or
unstable, depending on the terminating admittances. This
was shown in [2], and also in Fig. 4, by plotting
determinant function F for a few ideal terminations over
all frequencies.

In order to determine the stability of the circuit under any
terminating impedances, determinant function F is
calculated from Eqs. (5) - (8) by numerically sweeping
angles α and β  from 0 to 2π at a single frequency (1.25
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GHz). The result is shown  in Fig. 5. The same
information is obtained from the corresponding envelope
of F. Fig. 6 shows the stability envelope as calculated
from Eq. (9).

For complete determination of the stability of the circuit,
the frequency has to be swept over a sufficient range. Fig.
7 shows the stability envelope for frequencies 0.25 GHz
to 5 GHz. The circuit is unstable with most of the
terminating loads, and we can see that the cases
calculated in [1,2] and in Fig. 4 are special cases, and
well within the envelope. Finally, Fig. 8 shows the
envelope of a marginally stable case, obtained with the
value gm2 = 0.1 S in the ring oscillator of Fig. 3.

4. Conclusion

A method for generalised stability analysis is presented.
Using stability envelope, the method is capable of
detecting automatically and in a single pass, instabilities
of the complete circuit, whether they are caused by
internal poles of the circuit or external terminations. It is
believed that this method will be a valuable tool for a
designer, as in the past the stability had to be analysed in
several steps, including partitioning of a complex multi-
stage circuit into separate parts.
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R1 = 10 Ω L1 = 560 pH C1 = 16 pF
CF = 0.1 pF gm1 = 500 mS gm2 = 400 mS

Fig. 3 Ring oscillator, R2 = 5Ω [1,2].

Fig. 4  Determinant function F of the ring oscillator 
with ideal terminations (50 Ω, short, open).
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Fig. 5  F at a single frequency (1.25 GHz), obtained
numerically from Eq. (5).

Fig. 6 Stability envelope at 1.25 GHz, calculated with 
the solution of Eq. (9).

Fig. 7 Stability envelope from 0.25 to 5 GHz.

Fig. 8 Stability envelope with gm2 = 0.1S
(from 0.25 to 5 GHz).
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